Start Part B

Thought Experiment

Statistical distribution of deuterium

SNIF-NMR[®] (²H-NMR)

SNIF-NMR[®] (²H-NMR)

.

Calculations

$$(D/H)_i^A = \frac{P^{ST}}{P_i^A} \times \frac{M^A}{M^{ST}} \times \frac{m^{ST}}{m^A} \times \frac{\frac{1}{2}H^A}{M^{ST}} \times (D/H)^{ST}$$

(D/H); Site-specific isotope ratio

- *P* Number of equivalent positions of hydrogen atoms
- **M** Molecular weight
- **m** Mass
- ^{2H} Signal intensity of ²H
- ST Standard
- A Sample A

Martin et al., Tetrahedron 41, 32

page

Wine Authentication

 determination of deuterium distribution in wine ethanol by SNIF-NMR spectroscopy (OIV MA-AS311-05):

F BfR

page 5

Wine Authentication

detection of chaptalization/sweetening by SNIF-NMR spectroscopy

(D/H)_l value

Wine Authentication

detection of chaptalization/sweetening by SNIF-NMR spectroscopy

Stable Isotope Analysis of Wine

- Official method of OIV to control chaptalization:
 - D/H isotope ratio in wine ethanol by SNIF-NMR spectroscopy
 - \rightarrow used to assess addition of beet (C₃) sugar
 - \rightarrow but not mixtures thereof
 - ¹³C/¹²C isotope ratio of wine ethanol by IRMS
 - \rightarrow used to assess addition of cane (C₄) sugar
 - Correlation of D/H and ¹³C/¹²C isotopic data determined by SNIF-NMR spectroscopy and IRMS, respectively
 - \rightarrow used to assess addition of cane (C₄) suga

nd mixture of sugars

and cane (C₄) suga

SNIF-NMR

 Detection of chaptalization/sweetening by SNIF-NMR spectroscopy and ¹³C IRMS

Stable Isotope Analysis of Wine

- Chaptalization: Process of adding sugar to unfermented grape must in order to increase the alcohol content after fermentation
- Reg. (EC) No 479/2008:
 - Zone A (e.g. most of Germany, UK): 3 % vol.
 - Zone B (e.g. Austria, parts of France): 2% vol.
 - Zone C (e.g. Hungary, parts of Slovakia): 1.5 % vol.
 - Italy, Greece, Spain, Portugal, Cyprus and parts of France (e.g. Bordeaux): 0 % vol.

addition of 17 g/L of sugar = increase of Alcoholic Grade of 1%Vol

Jean-Antoine-Claude Chaptal *1756 – †1832

COMPENDIUM OF INTERNATIONAL ANALYSIS OF METHODS - OIV Determination of the deuterium distribution in ethanol by SNIF-NMR

Type II method Control temperature!

78.0 - 78.2 °C

COMPENDIUM OF INTERNATIONAL ANALYSIS OF METHODS - OIV Determination of the deuterium distribution in ethanol by SNIF-NMR

- If > 78.5 °C: stop destillation, let cool down, start again
- Repeat until temperature does not decrease anymore

250 mL wine

Food Identity (Composition)

Isotopic Analysis

Isotopic Analysis

Bundesinstitut für Risikobewertung

Thank you for your attention

Carsten Fauhl-Hassek

German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 • 10589 Berlin, GERMANY Phone +49 30 - 184 12 - 28300 bfr@bfr.bund.de • www.bfr.bund.de/en